Two Novel Saponins from Lysimachia capillipes

Jing Kui TIAN^{1,2}*, Chen XIE², Zhong Mei ZOU², Li Zhen XU², Shi Lin YANG²

¹ Deptment of Chinese Medicine Science & Engineering, Zhejiang University, Hangzhou 310028
²Institute of Medicinal Plants Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100094

Abstract: Two new saponins named capilliposide C **1** and capilliposide D **2** were isolated from the whole plants of *Lysimachia capillipes*, their structures were determined by 1D and 2D NMR, ESI-MS techniques, and chemical methods. Capilliposide C showed significant cytotoxic activity against human A2780 cells.

Keywords: Lysimachia capillipes, triterpene saponin, capilliposide C and D.

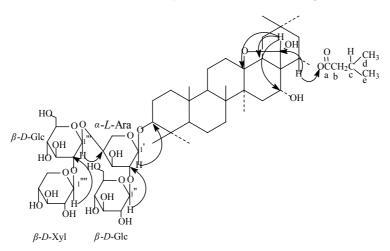
We have isolated some flavones, lactone and two new saponins from *Lysimachia capillipes*¹⁻³, now we continue to report the isolation and structural elucidation of two novel saponins, capilliposide C **1** and capilliposide D **2**. Capilliposide C showed significant cytotoxic activity against human A2780 cells.

The whole plant of *Lysimachia capillipes* was extracted with 95% and 50% EtOH, successively, and the extracts were combined and concentrated. The residue was chromatographed on silica gel resin column, eluting with petroleum ether, CH_2Cl_2 , $(CH_3)_2CO$, MeOH, and 50%EtOH, successively. The MeOH eluent was chromatographed on AB-8 resin column to afford a saponin-rich portion, this portion was separated by silica gel column chromatography, eluting with CHCl₃/MeOH (contain 5% H₂O) in a gradient manner. Fraction 7 was separated on ODS C_{18} (35–50 µm) column, using MeOH/ H₂O (57.5:42.5) as eluents; and HPLC (10 µm, 10*250 mm, Alltech) using MeOH/ H₂O (56:44) as eluents to afford **1** (20 mg) and **2** (16 mg).

Compound **1** was an amorphous white powder, mp 239-241 °C, $[\alpha]_D^{20}$ -10.0 (c 0.50, pyridine), and gave positive result to Liebermann-Burchard test. The negative ESIMS, showed a *quasi*-molecular ion peak at *m/z* 1161.5[M-H]⁻, the fragment ion peaks at *m/z* 1029[M-132 (xylose)-H]⁻, 867[1029-162 (glucose)]⁻, 705[867-162 (glucose)]⁻ and 573 [705-132(arabinose)]⁻, indicated the presence of an arabinose inner unit. The molecular formula of **1** (C₅₇H₉₄O₂₄) was deduced from ¹³CNMR and MS data. The seven tertiary methyl groups ($\delta_{\rm H}$ 1.55, 1.28, 1.14, 1.09, 1.03, 1.02 and 0.77) observed in the ¹HNMR and ¹³CNMR spectrum ($\delta_{\rm C}$ 17.5, 17.7, 19.8, 20.9, 26.7, 29.1 and 34.4). The data showed that compound **1** was a triterpene saponin. Glucose, arabinose and xylose were

^{*} E-mail: tjk@zju.edu.cn

Jing Kui TIAN et al.


detected after the acid hydrolysis of **1** by HPTLC, comparing with authentic samples (Sigma). All the carbon signals were assigned by 2D NMR including ¹H-¹HCOSY, HMQC-TOCSY and HMBC experiments (**Table 1**), the ¹³CNMR data were compared with that of anagalligenin A-22-acetate (3β , 16α , 22α , 28α -tetrahydroxy-22-acetate-13, 28-epoxyoleanane)⁴, indicating that the ¹³CNMR data of the aglycone of **1** were very similar to that of ¹³CNMR of anagalligenin A -22-acetate, except the signals of the acetyl in anagalligenin A-22-acetate were replaced by those of isovaleryl in **1**, and the chemical shift of C-3 of **1** shifted downfield by 12.2 ppm, which indicated that the glycoside linked at C-3.

The sugar sequence of the oligosaccharide chain and the glycosidic site of **1** were determined by HMBC spectrum. In the HMBC spectrum (**Figure 1**), the anomeric proton of arabinose at $\delta_H 4.72(d, 1H, J=6.0 \text{ Hz})$ correlated with C-3 of the aglycone at δ 90.4, the anomeric proton of glucose-I at t $\delta_H 5.43(d, 1H, J=8.0 \text{ Hz})$ correlated with C-2 of the arabinose at $\delta_C 80.5$, the anomeric proton of glucose-II at $\delta_H 4.88(d, 1H, J=8.0 \text{ Hz})$ correlated with C-4 of the arabinose at $\delta_C 80.1$, the anomeric proton of the xylose at $\delta_H 4.82(d, 1H, J=7.5 \text{ Hz})$ correlated with C-2 of the glucose-II at $\delta_C 86.3$, the sugar linkages of the oligosaccharide chains were shown in **Figure 1**.

Thus, the structure of the compound **1** was established as 22-isovalerateanagalligenin A, $3-O-\beta-D$ -xylpyranosyl- $(1\rightarrow 2)-\beta-D$ -glucopyranosyl- $(1\rightarrow 4)-[\beta-D$ -glucopyranosyl- $(1\rightarrow 2)]-\alpha$ -L-arabinpyranoside, named as capilliposide C.

Compound **2** was a white amorphous powder, mp 208-210°C, $[\alpha]_D^{20}$ -5.0 (c 0.10, pyridine). The negative ESIMS showed a *quasi*-molecular ion peak at *m/z* 1239.8[M - H]⁻. The molecular formula (C₅₈H₉₆O₂₈) was deduced from ¹³CNMR and MS data. The NMR data of **2** were very similar to those of **1** (**Table 1**), except for that the signals of the isovaleryl of **1** were replaced by those of β -D-glucopyranoside of **2**. Thus the structure of **2** was determined as anagalligenin A, 3-*O*-{ β -D-xylpyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl-(1 \rightarrow 4)-[β -D-glucopyranosyl-(1 \rightarrow 2)]- α -L-arabinpyranosyl}-22-*O*- β -D-glucopyranoside, named as capilliposide D.

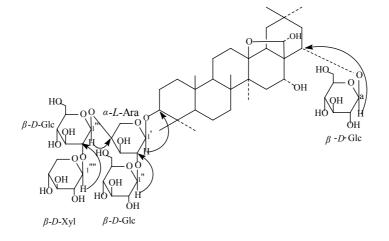


Figure 2 Structure and key HMBC correlations of compound 2

Table 1 The 13 CNMR(125MHz) spectral data of compound 1 and 2 (in pyridine- d_{65} δ ppm)

position	1	2	position		1	2
1	40.3	38.9	3-O-ara	1'	105.6	104.5
2	27.3	26.3	5 0 414	2'	80.5	79.1
3	90.4	89.0		3'	74.5	73.5
4	40.9	39.5		4'	80.1	78.7
5	56.8	55.4		5'	65.8	64.2
6	19.1	17.6	$glc(1\rightarrow 2)$	1"	105.9	104.2
7	35.4	34.0	8()	2"	77.1	75.6
8	43.8	43.7		3"	78.6	77.2
9	51.4	50.0		4"	72.8	71.2
10	38.0	36.5		5"	79.2	77.7
11	20.4	19.4		6"	64.0	62.1
12	34.4	33.0	$glc(1\rightarrow 4)$	1'''	105.4	104.0
13	88.9	87.2	0 ()	2""	86.3	84.9
14	45.0	44.1		3'''	79.0	77.2
15	37.8	36.2		4'''	72.0	70.6
16	70.9	69.0		5'''	78.3	77.6
17	52.6	52.4		6'''	63.2	61.8
18	48.5	47.1	$xyl(1 \rightarrow 2)$	1''''	108.6	107.2
19	39.5	38.6	• • • •	2""	77.0	75.7
20	34.5	32.9		3''''	79.2	77.2
21	42.8	41.8		4''''	71.7	70.3
22	73.8	76.9		5''''	68.5	67.1
23	29.1	27.7	At 22-C	а	173.9	103.6
24	17.7	16.3		b	27.7	75.7
25	17.5	18.1		с	45.3	77.6
26	19.8	18.3		d	23.7	71.4
27	20.9	19.8		e	23.6	78.1
28	98.9	97.1		f		62.6
29	34.4	33.3				
30	26.7	25.5				

Jing Kui TIAN et al.

The cytotoxic activity of compound 1 and 2 were tested against human A2780 cells, compound 1 showed significant cytotoxic activity with IC₅₀ value of 0.1 μ g/mL but 2 is inactive.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 39870085).

References

- C. Xie, L. Z. Xu, B. H. Zhao, S. L. Yang, *Chinese Traditional Herb Drugs*, 2000, 31(2), 81.
 C. Xie, L. Z. Xu, X. Z. Luo, *et al.*, *Journal of Asian Natural Products Research*, 2002, 4(1),17.
- 3. J. K. Tian, Z. M. Zou, L. Z. Xu, S. L. Yang, Acta Pharm. Sin., 2004, 39(9), 722.
- 4. G. W. Glombitza, H, Kurth, Plant Medic., 1987, 53(5), 333.

Received 16 March, 2005

1610